The demand for novel approaches for prevention of hospital-associated infections (HAIs) has recently focused on intrinsically antimicrobial surfaces such as copper. We assessed the bactericidal activity for common nosocomial pathogens of various copper surfaces over time in comparison to stainless steel.

**Methods**

Methodic-resistant Staphylococci aureus (MSSA, ATCC 29213) and clinical isolates of vancomycin-resistant Enterococcus faecium (VRE) and Acinetobacter baumannii were evaluated.

Products tested included:

- Products by CuVerro®:
  - 80% copper (Cu)/20% nickel (Ni) alloy
  - 90% Cu/10% Ni alloy
  - Antimicrobial copper products from LuminOre Inc.: 64% Cu/11% Ni/25% other ingredients
  - EOS protective surface from Cupron
  - 16% cuprous oxide/84% other ingredients

- Additional products tested:
  - 100% Cu
  - Polyethylene plus colloidal copper
  - Steel plus colloidal copper
  - Stainless steel was the negative control

Organisms grown on sheep blood agar (BAP) were suspended in saline and standardized to a turbidity approximating 1 x 10^6 CFU/mL. A 10 µL aliquot was applied to 4 separate cleaned and sterilized coupons (sample piece of each product, measuring 1 cm²), which were incubated at room temperature for either 6, 30, 60, or 120 minute incubation. After incubation, the coupon was placed in 1 mL D/E buffer containing glass beads and vortexed. An aliquot was removed, serially diluted and plated onto BAPs in duplicate to determine surviving CFU per coupon. At least 4 replicates of each coupon were tested.

**Results**

For all three organisms, all copper surfaces demonstrated statistically significant enhanced killing compared with stainless steel, although there were differences between organisms and surfaces. For MSSA, LuminOre copper-colored pebbled surface killed best (p=0.035 compared with next highest ranked sample); for VRE, LuminOre Nickel-colored smooth (p=0.01).

For Acinetobacter, all copper materials were comparable (p=0.006 compared with stainless steel).

An increased copper concentration did not seem to impact the kill curves.

**Conclusion**

All copper products demonstrated significantly enhanced killing compared with stainless steel, with two LuminOre products showing greatest efficacy for MSSA and VRE. While all the tested commercially available copper surfaces had antimicrobial activity, there was substantial variation between organisms and surface types. These findings have fundamental implications for the design of studies of antimicrobial surfaces.

**Acknowledgements**

This material is based upon work supported by the Agency for Healthcare Research and Quality (AHRQ). Grant #: 1 R01 HS021188-01

Contact: Daniel Z. Usian, MD, dusian@mednet.ucla.edu

**Background**

- Methodic-resistant Staphylococcus aureus (MSSA, ATCC 29213) and clinical isolates of vancomycin-resistant Enterococcus faecium (VRE) and Acinetobacter baumannii were evaluated.

**Discussion**

Ranking of products was performed by fitting exponential decay models to the CFU/coupon and ranking kill rates. Statistical differences between kill rates were determined by two-tailed z-tests on kill rates.

**Figures 1 and 2:** Various copper surfaces inoculated and incubated at room temperature. 1) Stainless steel sample (negative control); 2) LuminOre Copper Touch pebbled texture sample; 3) EOS Copper oxynitride; 4) Steel w/ colloidal copper applied to 4 separate cleaned and sterilized coupons (crosby 1, 2, 5, 60, and 120 minute incubation).

**Figures 3-5:** Coupon placed in 1 mL D/E buffer containing glass beads and vortexed. 100 µL aliquot plated to BAP; LuminOre岳 closely forming units are counted after overnight incubation.